# **Industriales**

**Enfriamiento Evaporatipo Directo.** 

Diseñado por Ingenieros especializados para satisfacer todas sus necesidades.

# Componentes Modulares

- Sección de ventilación con descarga horizontal y vertical, turbina de diseño dual para entrada de aire.
- Módulos evaporativos con filtros Master Cool® de alta eficiencia en medidas estándar de 8" y 12".

## Construcción Durable

 Acero galvanizado recubierto con nuestro exclusivo proceso DURAPAINT consistente en fosfatizado, sellado crómico y capa basada en polvo poliéster epoxico horneado.

# Máxima Eficiencia

 La opción de los módulos permite que las eficiencias de enfriemiento sean adaptables a sus requisitos de diseño.

## Alta Rentabilidad

• El primer costo competitivo combinado con los ahorros substanciales de la energía contra las unidades de refrigeración resultó un reembolso rápido. Es más, la simplicidad del diseño permite requisitos de mantenimiento bajos.

## Otras Características

- Turbina balanceada.
- Eje sólido de gran durabilidad.
- Motores de alta eficiencia.
- Bombas Master Cool de alto rendimiento.





Master Cool con 1 Módulo.



Master Cool con 2 Módulos.





# Enfriadores Industriales



#### Instrucciones para Determinar el Tamaño del Industrial.

Siga los siguientes pasos para clasificar correctamente el enfriador industrial **Master Cool**.

La capacidad del funcionamiento o de calor sensible de cualquier enfriador esta en función de los PCM y de la eficiencia de saturación (que determina la temperatura entregada en la descarga del aire). Si se consideran los PCM para determinar el tamaño podría dar lugar a un uso incorrecto de clasificación.

#### 1.- Determine las condiciones de diseño:

TBS - Temperatura de Bulbo Seco.

**TBH** - Temperatura de Bulbo Húmedo.

TDI - Temperatura de Diseño.

#### 2.- Determine la carga de calor sensible del diseño (BTU/Hr)

# **3-. Determine la temperatura del aire a la salida (TSA): TSA**=TBS-[(TBS-TBH) \*EFF] Donde EFF=0.80 para filtros de 8" o 0.90 para filtros de 12"

#### 4.- Determine los PCM requeridos:

PCM=0.925 \* Carga de Calor Sensible / (TDI-TSA)

#### 5.- Determine el enfriador(s) requerido(s):

Refiera a las especificaciones / cartas de aire de flujo en la siguiente página.

#### Selección y Ajuste de la Polea Variable del Motor

- Determine la presión estática externa del sistema de la entrega de aire.
- **2.-** Determine el motor (hp, voltaje y fase) requerido para entregar la circulación de aire de diseño.
- **3.-** Determine el tamaño del eje para el motor seleccionado. Refiera a la carta de especificaciones eléctricas.
- **4.-** Determine las RPM que entregará la circulación de aire requerida (PCM) según la presión estática del sistema. Refiera al cuadro de entrega de aire PCM para elegir el enfriador y los HP del motor.
- 5.- Determinar la polea acanalada, y el número de vueltas necesarias, que se encuentre más cercano a las RPM deseadas. Refierase a las cartas de la selección de la polea acanalada en la página siguiente. Encuentre los HP seleccionados del motor, tamaño del eje, y
  - RPM (veáse los pasos 2-4 arriba). Puede ser que usted necesite observar más de una polea acanalada antes de encontrar las RPM correctas.
- **6.-** Especifique la polea acanalada y el ajuste de la polea acanalada (las vueltas necesarias) para el instalador.

#### Al pedir el enfriador, usted debe de conocer esta información.

- Ciudad donde se instalará la unidad enfriadora de aire.
- Presión estática del diseño del sistema.
- Volumen de aire deseado en el diseño del sistema.
- Fuente de corriente eléctrica disponible.
- Estabilidad en la estructura para poder apoyar el peso de la unidad en operación.

# Los sistemas completos consisten en los componentes siguientes, y se entregan por separado para la flexibilidad de su aplicación.

- Sección del ventilador del gabinete 1.
- Sección húmeda de los filtros (1 para 24 2 para 28).
- Motor.
- Polea del motor.
- Kit de bandas.

Nota: Los arrancadores, cableado interno y protección térmica no se provee.

## Entrega de Aire con PCM, Presiones Estáticas Externas. En pulgadas c.a.

|                         |                |       | Información o | de la Banda | (      | 0       | ,     | 1   | ,,    | 2   |       |
|-------------------------|----------------|-------|---------------|-------------|--------|---------|-------|-----|-------|-----|-------|
|                         | Polea          | BHP   | Cantidad      | Banda       | PCM    | RPM     | PCM   | RPM | PCM   | RPM | PCM   |
| Un Módulo MMC110-8 8"   |                |       |               |             |        |         | _     |     | _     |     |       |
| MH/MD-11008             | 3 3/4 x 7/8'   | 1     | 1             | B-81        | 7030   | 329     | 6760  | 339 | 6420  | 349 | 6080  |
| MH/MD-13008             | 4.5 × 7/8"     | 1 1/2 | 1             | B-81        | 8050   | 376     | 7810  | 385 | 7530  | 394 | 7250  |
| MH/MD-16008             | 4.5 × 7/8"     | 2     | 1             | B-81        | 8860   | 414     | 8640  | 422 | 8400  | 430 | 8140  |
| MH/MD-17008             | 4 3/4 x 1 1/8" | 3     | 1             | B-82        | 9050   | 422     | 9050  | 440 | 9050  | 459 | 9050  |
| Un Módulo MMC110 12"    |                |       |               |             |        |         |       |     |       |     |       |
| MH/MD-11012             | 3 3/4 x 7/8"   | 1     | 1             | B-81        | 6880   | 328     | 6560  | 338 | 6250  | 349 | 5910  |
| MH/MD-13012             | 4.5 x 7/8"     | 1 1/2 | 1             | B-81        | 7880   | 376     | 7600  | 384 | 7320  | 393 | 7040  |
| MH/MD-16012             | 4.5 x 7/8"     | 2     | 1             | B-81        | 8670   | 414     | 8420  | 421 | 8160  | 429 | 7920  |
| MH/MD-17012             | 4 3/4 x 1 1/8" | 3     | 1             | B-82        | 9050   | 422     | 9050  | 439 | 9050  | 458 | 9050  |
| Dos Módulos MMC110-8 8" |                |       |               |             |        |         |       |     |       |     |       |
| MH/MD-18008             | 4 3/4 x 1 1/8" | 3     | 2             | B-92        | 14020  | 309     | 13720 | 316 | 13350 | 323 | 12960 |
| MH/MD-21008             | 5 x 1 1/8"     | 5     | 2             | B-92        | 16620  | 367     | 16390 | 371 | 16080 | 378 | 15770 |
| MH/MD-32008             | 5 1/4 x 1 3/8" | 7 1/2 | 2             | B-93        | ////// | /////// | 18100 | 406 | 18100 | 418 | 18100 |
| Dos Módulos MMC110 12"  |                | ı     |               |             |        |         |       |     |       |     |       |
| MH/MD-18012             | 4 3/4 x 1 1/8" | 3     | 2             | B-91        | 13950  | 312     | 13510 | 318 | 13130 | 325 | 12760 |
| MH/MD-21012             | 5 x 1 1/8"     | 5     | 2             | B-92        | 16540  | 370     | 16050 | 375 | 15820 | 380 | 15510 |
| MH/MD-32012             | 5 1/4 x 1 3/8" | 7 1/2 | 2             | B-93        | 18100  | 406     | 18100 | 409 | 18100 | 428 | 18010 |

Areas Sombreadas No excederse de las RPM mencionadas, puede resultar un arrastre de agua.

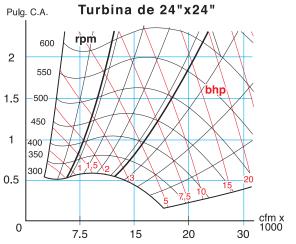
No recomendado.

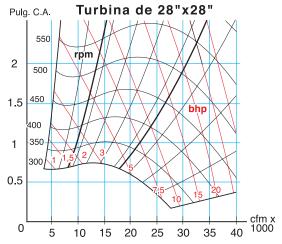
#### MD524/MS524 Selección de la Polea Acanalada

|              | E         | ∃je       |        |         |          |          | Giro de la | a Polea A | canalad | a Abierta | ì   |     |
|--------------|-----------|-----------|--------|---------|----------|----------|------------|-----------|---------|-----------|-----|-----|
| Motor HP     | D         | 5         | 41/2   | 4       | 31/2     | 3        | 21/2       | 2         | 11/2    | 1         | 1/2 | 0   |
| Motor de 3 l | Fases Ven | tilador R | PM @ M | otor de | 1750 RPI | M / Giro | de la Po   | lea Acar  | alada A | bierto.   |     |     |
| 1            | 7/8       | 256       | 269    | 283     | 296      | 310      | 323        | 337       | 350     | 363       | 377 | 390 |
| 1, 11/2, 2   | 7/8       | 323       | 337    | 350     | 363      | 377      | 390        | 404       | 417     | 431       | 444 | 458 |
| 1, 11/2, 2   | 7/8       | 377       | 390    | 404     | 417      | 431      | 444        | 458       | 471     | 485       | 498 | 512 |
| 3            | 1 1/8     | 377       | 390    | 404     | 417      | 431      | 444        | 458       | 471     | 485       | 498 | 512 |
| 11/2, 2      | 7/8       | 458       | 471    | 485     | 498      | 512      | 525        | 538       | 552     | 565       | 579 | 592 |
| 3            | 1 1/8     | 458       | 471    | 485     | 498      | 512      | 525        | 538       | 552     | 565       | 579 | 592 |

## MD628/MS628 Selección de la Polea Acanalada

|            | Е         | je        |        | Giro de la | Giro de la Polea Acanalada Abierta |          |          |          |          |        |     |     |  |  |
|------------|-----------|-----------|--------|------------|------------------------------------|----------|----------|----------|----------|--------|-----|-----|--|--|
| Motor HP   | D         | 5         | 41/2   | 4          | 31/2                               | 3        | 21/2     | 2        | 11/2     | 1      | 1/2 | 0   |  |  |
| Motor de 3 | Fases Ven | tilador R | PM @ M | otor de    | 1750 RPI                           | M / Giro | de la Po | lea Acar | nalada A | bierto |     |     |  |  |
| 3          | 1 1/8     | 253       | 263    | 272        | 282                                | 292      | 301      | 311      | 321      | 331    | 340 | 350 |  |  |
| 3,5        | 1 1/8     | 331       | 340    | 350        | 360                                | 369      | 379      | 389      | 399      | 408    | 418 | 428 |  |  |
| 5          | 1 1/8     | 408       | 418    | 428        | 438                                | 447      | 457      | 467      | 476      | 486    | 496 | 506 |  |  |
| 71/2       | 1 3/8     | 408       | 418    | 428        | 438                                | 447      | 457      | 467      | 476      | 486    | 496 | 506 |  |  |


#### **Factores de Corrección**


Las capacidades reales de los equipos, están calculadas bajo condiciones normales de temperatura, humedad relativa y altura sobre nivel del mar.

Para un cálculo más exacto realice los ajustes necesarios ó consulte nuestros factores de corrección. Solicite información con nuestros representantes.

|     | ,3    | 3   | ,,,   | 1   | ,5    |     | ,6    | 6   | ,7    | ,   | 3,    | 3   | ,9    |     | 1,0   | 0   |
|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
| RPM | PCM   | RPM |
|     |       |     |       |     |       |     |       |     |       |     |       |     |       |     |       |     |
| 349 | 6080  | 359 | 5720  | 371 | 5280  | 386 | 4660  | 409 | 4160  | 426 | 3720  | 442 | 3310  | 458 | 2940  | 473 |
| 394 | 7250  | 402 | 6930  | 412 | 6630  | 422 | 6240  | 434 | 5840  | 449 | 5260  | 471 | 4830  | 485 | 4440  | 499 |
| 430 | 8140  | 438 | 7880  | 446 | 7590  | 455 | 7310  | 464 | 6970  | 475 | 6630  | 487 | 6140  | 505 | 5660  | 523 |
| 459 | 9050  | 475 | 9050  | 491 | 9050  | 508 | 8820  | 516 | 8570  | 524 | 8330  | 532 | 8030  | 542 | 7730  | 552 |
|     |       |     |       |     |       |     |       |     |       |     |       |     | 1     |     |       |     |
| 349 | 5910  | 360 | 5540  | 373 | 5130  | 386 | 4510  | 408 | 4060  | 425 | 3650  | 441 | 3270  | 455 | 2900  | 471 |
| 393 | 7040  | 403 | 6740  | 413 | 6430  | 424 | 6070  | 435 | 5620  | 450 | 5110  | 469 | 4710  | 484 | 4350  | 498 |
| 429 | 7920  | 438 | 7650  | 447 | 7380  | 456 | 7100  | 466 | 6760  | 476 | 6440  | 487 | 5930  | 505 | 5510  | 520 |
| 458 | 9050  | 475 | 9050  | 492 | 8820  | 509 | 8570  | 518 | 8340  | 526 | 8080  | 534 | 7790  | 544 | 7520  | 553 |
|     |       |     |       |     |       |     |       |     |       |     |       |     |       |     |       |     |
| 323 | 12960 | 330 | 12540 | 337 | 12130 | 345 | 11690 | 353 | 11250 | 362 | 10800 | 371 | 10330 | 382 | 9810  | 393 |
| 378 | 15770 | 384 | 15450 | 390 | 15090 | 396 | 14730 | 402 | 14390 | 409 | 14020 | 416 | 13660 | 423 | 13280 | 430 |
| 418 | 18100 | 431 | 18030 | 440 | 17760 | 445 | 17440 | 450 | 17130 | 455 | 16820 | 461 | 16520 | 467 | 16210 | 473 |
|     |       |     |       |     |       |     |       |     |       |     |       |     |       |     |       |     |
| 325 | 12760 | 332 | 12370 | 340 | 11960 | 348 | 11530 | 356 | 11070 | 364 | 10580 | 373 | 10070 | 384 | 9630  | 396 |
| 380 | 15510 | 386 | 15190 | 393 | 14890 | 399 | 14530 | 406 | 14190 | 412 | 13820 | 419 | 13460 | 426 | 13060 | 433 |
| 428 | 18010 | 437 | 17730 | 443 | 17450 | 448 | 17190 | 454 | 16900 | 459 | 16590 | 465 | 16300 | 471 | 15970 | 477 |

Tablas sobre nivel del mar a 21°C (70°F) y 50% H.R.

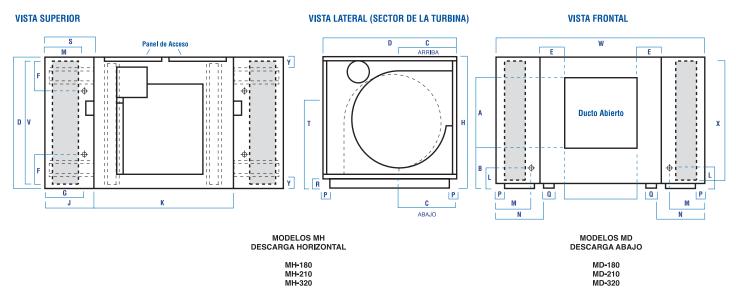




Curvas del ventilador, SNM. En estas gráficas no esta considerada la perdida por filtro y transmisión.

# **Especificaciones Eléctricas**

| Modelo<br>Descarga     | # Parte del |      |                 | MOTOR   |         |          | вомва  |       |        |       |      |  |  |  |  |  |
|------------------------|-------------|------|-----------------|---------|---------|----------|--------|-------|--------|-------|------|--|--|--|--|--|
| H / D                  | Motor       | CF   | V~              | A 230V~ | A 460V~ | Dia. Eje | Modelo | Volts | Ampers | Watts | LPH  |  |  |  |  |  |
| MD/MH-110              | OP110433    | 1    |                 | 3,8     | 1,9     | 7/8      |        |       |        |       |      |  |  |  |  |  |
| MD/MH-130              | OP110519    | 1,5  |                 | 4,6     | 2,3     | 7/8      |        |       |        |       |      |  |  |  |  |  |
| MD/MH-160              | OP110688    | 2,0  | 230 V~          | 8,8     | 4,4     | 7/8      |        |       |        |       |      |  |  |  |  |  |
| MD/MH-170<br>MD/MH-180 | OP110734    | 3,0  | 460 V~<br>60 Hz | 10,8    | 5,4     | 1 1/8    | B-220  | 220   | 0.63   | 77    | 1136 |  |  |  |  |  |
| MD/MH-210              | OP110436    | 5,0  | 3 F             | 15,0    | 7,5     | 1 1/8    |        |       |        |       |      |  |  |  |  |  |
| MD/MH-320              | OP112560    | 7,5  |                 | 20,4    | 10,2    | 1 3/8    |        |       |        |       |      |  |  |  |  |  |
| MD/MH-360              | OP112688    | 10,0 | 0,0             | 27,2    | 13,6    | 1 3/8    |        |       |        |       |      |  |  |  |  |  |
| MD/MH-420              | OP112879    | 15,0 |                 | 38,0    | 19,0    | 1 5/8    |        |       |        |       |      |  |  |  |  |  |


# Dimensiones de los Modelos con 1 Módulo. MS524 (Descarga Horizontal) y MD524 (Descarga Abajo).

## **VISTA SUPERIOR VISTA LATERAL VISTA FRONTAL** D Panel de Acceso **Ducto Abierto** QN N Q MODELOS MH DESCARGA HORIZONTAL MODELOS MD DESCARGA VERTICAL MH-110 MH-130 MH-160 MH-170 MD-110 MD-130 MD-160 MD-170

Dimensiones en cms.

| Modelo<br>Descarga                           | Modelo 1 Módulo G<br>Descarga Filtrantes |     |     |     |    | Localización del Ducto<br>Lado Abajo |   | Localización<br>del Dren |    | Modulo Gabinete Localización<br>Turbina Toma de Agua |    | Localización<br>Conexión Eléctrica |    |    |    | Dimensiones<br>del Patín |      |      | S    | Dimensiones<br>Filtro |   | Area | Peso Aprox. Kg. |     |     |      |                          |                          |
|----------------------------------------------|------------------------------------------|-----|-----|-----|----|--------------------------------------|---|--------------------------|----|------------------------------------------------------|----|------------------------------------|----|----|----|--------------------------|------|------|------|-----------------------|---|------|-----------------|-----|-----|------|--------------------------|--------------------------|
| H/D                                          |                                          | Н   | W   | D   | Α  | В                                    | C | Ε                        | F  | G                                                    | J  | K                                  | L  | M  | 8  | T                        | Dia. | Anch | Eje  | N                     | P | Q    | R               | X   | ٧   | m²   | Empacado                 | Operación                |
| MH-11008<br>MH-13008<br>MH-16008<br>MH-17008 | MMC110-8                                 | 131 | 125 | 167 | 68 | 43                                   | 8 | 28                       | 33 | 34                                                   | 43 | 125                                | 19 | 32 | 46 | 90                       | 61   | 61   | 3.01 | 5                     | 4 | 10   | 7               | 114 | 122 | 1.39 | 221<br>224<br>225<br>235 | 398<br>403<br>406<br>423 |
| MH-11012<br>MH-13012<br>MH-16012<br>MH-17012 | MMC110                                   | 131 | 125 | 178 | 68 | 43                                   | 8 | 28                       | 33 | 44                                                   | 53 | 125                                | 19 | 42 | 56 | 90                       | 61   | 61   | 3.01 | 5                     | 4 | 10   | 7               | 114 | 122 | 1.39 | 230<br>233<br>235<br>244 | 415<br>419<br>422<br>439 |

# Dimensiones de los Modelos con 2 Módulos. MS628 (Descarga Horizontal) y MD628 (Descarga Abajo).



Dimensiones en cms.

| Modelo<br>Descarga               | 2 Módulos<br>Filtrantes | G   | abine | te  | Loc | alizaciói<br>Lado <i>l</i> |    |    | Localiz<br>del D |    | Modulo | Gabinete<br>Turbina |    |    | Localiza<br>Conexión El |    |      | Turbina | a     |    | Dim. | del P | atín |   | Dimen<br>Fil |     | Area           | Peso Api          | rox. Kg.          |
|----------------------------------|-------------------------|-----|-------|-----|-----|----------------------------|----|----|------------------|----|--------|---------------------|----|----|-------------------------|----|------|---------|-------|----|------|-------|------|---|--------------|-----|----------------|-------------------|-------------------|
| H/D                              |                         | Н   | W     | D   | Α   | В                          | C  | Ε  | F                | G  | J      | K                   | L  | M  | S                       | T  | Dia. | Anch    | o Eje | N  | P    | Υ     | Q    | R | X            | V   | m <sup>2</sup> | Empacado          | Operación         |
| MH-18008<br>MH-21008<br>MH-32008 | MMC110-8                | 131 | 211   | 125 | 81  | 45                         | 38 | 21 | 33               | 34 | 43     | 125                 | 19 | 31 | 46                      | 90 | 71   | 71      | 3.01  | 48 | 4    | 5     | 10   | 6 | 114          | 122 | 2.78           | 240<br>249<br>266 | 432<br>449<br>478 |
| MH-18012<br>MH-21012<br>MH-32012 | MMC110                  | 131 | 231   | 125 | 81  | 45                         | 38 | 21 | 33               | 43 | 53     | 125                 | 19 | 40 | 56                      | 90 | 71   | 71      | 3.01  | 58 | 4    | 5     | 10   | 6 | 114          | 122 | 2.78           | 249<br>259<br>275 | 448<br>465<br>495 |



# Enfriamiento Evaporativo Industrial

#### • Enfriamiento por Evaporación Directa.

Específicamente, siempre que se evapore agua, se absorberá calor. Este principio básico es la base para el diseño del **Enfriador Evaporativo Directo Master Cool**.

#### Alta Calidad en su Fabricación.

El acero galvanizado caliente-sumergido, con soldadura autógena para una fuerza máxima se combina con nuestro acabado exclusivo **DURAPAINT** que protege el sistema - tinas del gabinete, cubiertas del distribuidor, lumbreras, y el resto de las piezas que entran en contacto con el agua.

La capa de polvo basada en poliéster epóxico electrostático se cura a temperaturas muy altas y es tan durable que estos modelos son respaldados por la mejor garantía en la industria de enfriadores evaporativos.

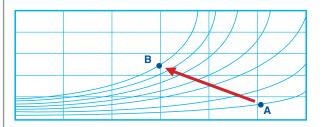
## Ahorrador de energía.

Sin compresores y condensadores, los enfriadores evaporativos Master Cool ofrecen un significativo ahorro de energía sobre las unidades de aire acondicionado; y sin usar los CFC'S, que dañan la capa superior de ozono. Su efecto de lavado del aire mejora la calidad en el interior proporcionando aire fresco y filtrado constantemente, forzando al aire añejo a salir del espacio acondicionado.

#### Niveles de Comodidad.

El enfriamiento evaporativo no solamente baja la temperatura en el espacio que se refrescará, sino que también baja la temperatura que usted siente, por el movimiento del aire rápido producido por el **Master Cool** el cual incrementa la evaporación de la piel que le causa sentir de 2º a 3º más de enfriamiento efectivo y que no es registrado por el termómetro.

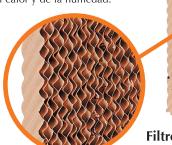
El enfriamiento evaporativo puede proporcionar las temperaturas eficaces y aceptables en la mayoría de los usos, tanto comercial como industrial.


#### • Aplicaciones Típicas.

El enfriador industrial **Master Cool** se utiliza para áreas de enfriamiento o puntos específicos. En muchas áreas se puede usar en aplicaciones comerciales e industriales: cocinas, lavanderías, gimnasios, áreas que tratan con calor, edificios, maquiladoras, talleres, cines y plantas de limpieza en seco que requieren grandes cantidades de aire fresco a bajo costo y donde se requiera mantener un nivel de confort o bien ser parte de un proceso productivo.

#### Proceso Directo del Enfriamiento Evaporativo.

El calor sensible del aire se convierte en calor latente del agua, evaporándose y conteniéndose en este. Esto quiere decir que necesitamos calor para elevar la temperatura del agua y convertirla en vapor, la cual se integrara al aire hasta ser contenida en el mismo.


El resultado es una temperatura de bulbo seco del aire que va de  ${\bf A}$  a  ${\bf B}$  y que se acerca a la temperatura de bulbo húmedo a partir del punto  ${\bf A}$ .



#### Principales Medios de Evaporación del Mater Cool.

Los principales medios evaporativos del Master Cool se

construyen de un material especial llamado **celulosa**, impregnado con las sales insolubles que los hacen resistir la degradación biológica y deterioro de los mismos. El diseño cruz-estriado dirige continuamente el agua en el sentido del aire que se inyecta, induciendo una mezcla de agua y aire para la transferencia óptima del calor y de la humedad.





Filtro de Alta Eficiencia

Su representante local o el departamento de aplicaciones de ingeniería de **IMPCO** estará listo para asistirle en la selección y uso de su unidad. IMPCO sigue una política de mejora continua del producto, nos reservamos el derecho de cambiar especificaciones y diseñar sin previo aviso.

Derechos Reservados.

